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SUMMARY

An improved low-Reynolds number k�õ model was adopted to predict the dynamic and thermal fields in
flows with transpiration. The performance of the adopted model was first contrasted with the direct
numerical simulation (DNS) data of channel flow with uniform wall injection and suction. The validity
of the present model applied to flows with a high level of transpiration was further examined. To explore
the model’s performance in complex environments, the model was applied to simulate a transpired
developing channel flow. By contrasting the predictions with DNS data and measurements, the results
indicated that the present model reproduced correctly the deceleration and acceleration of the flow
caused by the injection and suction from the permeable part of the wall. The turbulence structure of
transpired flows was also well captured and the superior performance of the adopted model was reflected
by the predicted correct level of o with the maximum being located at both the injection and the suction
walls. The predicted thermal field by the present model also compared favourably with the DNS data and
measurements. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The adoption of wall transpiration as a flow control technique is frequently encountered in a
variety of engineering applications. Injection from the permeable wall, for example, has been
found to be an effective tool to produce film cooling for turbine blades exposed to a hot free
stream. Because of the fluid injection into the mainstream, a thickened boundary layer is
created, and consequently, the surface skin friction and hence the drag decreases. An elevated
level of turbulent kinetic energy is also observed. In aeronautical applications, suction, on the
other hand, is frequently used to delay the boundary layer separation and to inhibit the
transition to turbulence. Even though the magnitude of the transpiration rate is often low
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compared with the mainstream, it significantly changes the surface skin friction as well as the
turbulence quantities near the wall.

With an aim to investigate the effects of wall transpiration on boundary layer development
and heat transfer characteristics, many experiments [1–3] had been performed. Despite these
efforts, the higher statistical quantities and the detailed near-wall flow structure of transpired
flows are still lacking. This, however, is partly alleviated by the arrival of direct numerical
simulations (DNS) of transpirational flows [4,5]. The simulated results not only reproduce the
previously observed experimental findings of lower moments of the flow field, but they also
provide the detailed budgets of the turbulent kinetic energy and its dissipation rate in the
vicinity of the wall. The DNS data indicate that the magnitude of the maximum turbulence
generation rate is larger on the injection wall and smaller on the suction wall compared with
that on the wall without transpiration. Furthermore, the maximum dissipation rate is observed
to be located on the transpired wall, as in the case of the non-transpired flows.

Although the DNS data can provide useful transpired flow information, the application of
the DNS is still restricted to low-Reynolds number flows, which are rarely encountered in
practical engineering applications. Besides, DNS is a computationally intensive scheme.
Therefore, it is a common practice to adopt turbulence models to predict transpired flows
[6–8].

Based on recent DNS data, a simplified form of a low-Reynolds number two-equation
turbulence model was proposed [9]. Key features of the model are the adoption of the Taylor
micro-scale in the damping function and the inclusions of the pressure diffusion terms in the
k and o equations. The inclusion of the pressure diffusion terms ensures the balance of the k
and o equations to be satisfied at the asymptotic state. However, the focus of the turbulence
modelling was concentrated on non-permeable flows. In the present study, the proposed model
is further applied to predict dynamic and thermal fields in flows with transpiration. The
predictive performance of the model is assessed by comparisons with DNS data and measure-
ments of transpired flows.

2. GOVERNING EQUATIONS

The Reynolds-averaged continuity, Navier–Stokes and temperature equations can be written
as
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where n and s are the kinematic viscosity and Prandtl number respectively.
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Within the framework of an eddy viscosity and adopting the Boussinesq approximation, the
Reynolds stress and heat flux are approximated as
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where nt and st are the turbulent kinematic viscosity and Prandtl number respectively.
In the present application, the turbulence model adopted is the k�õ model [10]. When applying

the model towards the wall, the contribution of the molecular viscosity on the shear stress
increases, and the standard high-Reynolds number turbulence must be modified to account for
the diminishing effect of the near-wall turbulence levels. The construction of the low-Reynolds
number model is the focus of the next section.

3. NEAR-WALL MODELLING

For the present approach, the turbulence is described by the eddy viscosity model that solves
the transport equations for turbulent kinetic energy and turbulent dissipation rate.

The exact form of the transport equation for turbulent kinetic energy can be expressed as [11]
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where Dk, Tk, Pk, Pk and o are the laminar diffusion, the turbulent diffusion, the pressure
diffusion, the turbulent production and the turbulent dissipation rate respectively.

The commonly adopted approach to model the turbulent diffusion term and the pressure
diffusion term is to adopt a general gradient diffusion hypothesis, i.e.
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where sk is the Prandtl number for k.
However, this modelling practice is only appropriate in the high-Reynolds number regime.

Whereas in the near-wall region, the asymptotic behaviour of the turbulent diffusion term and
the pressure diffusion term are different.

This can be verified by first examining the variations of the instantaneous velocity components
with the distance from the wall, y. Following Launder [11] this can be expressed as

u=b1y+c1y2+d1y3+ · · · , (8)
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6=c2y2+d2y3+ · · · , (9)

w=b3y+c3y2+d3y3+ · · · , (10)

where the coefficients bi, ci and di are functions of time whose mean value must be zero since
ui=0.

By inserting the y-dependent turbulent quantities into the k equation, it can be shown that,
in the near-wall region, the following prevails:
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If the modelling of the pressure diffusion term takes the form of Equation (7), the contribution
of the pressure diffusion process will be absent in the near-wall region. This has a profound effect
on the predicted near-wall turbulent dissipation rate level. Most models showed that the
dissipation rate reached its maximum value somewhere inside the viscous sublayer. However,
DNS data indicate that the maximum value of dissipation rate should be located at the wall
itself. These, as argued by Kawamura [12], necessitate the inclusion of Pk in the k equation,
especially in the near-wall region. DNS indicates the influences of the pressure diffusion term
rapidly decrease away from the wall, therefore Pk is modelled as [12]
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It is also apparent that ôw stands for the non-zero value of dissipation rate at the wall ow. Since
ô approaches 0 at about y+\15, this formulation confines the influence of Pk to the wall region.

A similar approach can be applied to model the equation of the turbulent dissipation rate.
There are currently two directions for solving the dissipation rate equation. The first one is the
solution of the o equation. The second approach is the decomposition of the dissipation rate
into two parts, i.e. o= õ+ ô, and adopting õ as the dependent variable. Therefore, õ is defined
as the difference between o [=n((ui/(xj)((ui/(xj)] and ô [=2n((
k/(xj)2]. The asymptotic
behaviour of õ is
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õ=o− ô:O(y2). (15)

As indicated previously, ôw stands for the non-zero value of dissipation rate at the wall ow.
Therefore, the advantage of this approach is that õ reaches zero at the wall and õ equals o at
about y+\15, where ô approaches 0.

The commonly adopted form of the õ equation can be expressed as [13]
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õ

k
−Co2f2

õ2
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In the vicinity of the wall, convection, turbulent diffusion and production go to zero very
rapidly, and the asymptotic behaviour of the remaining term is
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This necessitates the inclusion of the pressure diffusion to balance the equation and the form
adopted is [9,11]
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The idea of the inclusion of Põ to balance the molecular diffusion at the wall was also adopted
by Kawamura [12] and Chien [14], although with different formulations. However, only the
present formulation mimics the diffusive nature of the pressure diffusion term. Furthermore,
the proposed modelled Põ also generates the extra source for o in the buffer zone, completely
replacing the commonly adopted function
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Based on the above approach, an improved low-Reynolds number k�õ model [9] was
proposed and takes the form

nt=0.09fm(yl)
k2

õ
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(õ

(xj

n
−n

(

(xj

� õ
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where yl=y/
nk/õ, 
nk/õ is the Taylor micro-scale, and Pk and Põ are pressure diffusion
terms in the k and õ equations. The coefficients of the model are set to be

fm=1−exp(0.01yl−0.08yl
3),

sk=1.4−1.1 exp
�

−
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10
�

,

sõ=1.3−1.0 exp
�

−
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�
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The adoption of yl avoids the obvious defect, i.e. the singularity occurring at the reattaching
point by adopting y+ =Uty/n. The damping functions are chosen to retain the high-Reynolds
number form away from the solid boundaries. The asymptotic values of the turbulent Prandtl
number sk and sõ are chosen as 0.3 to obtain a sufficient dissipation rate in the vicinity of the
wall. In the core region of the flow, sk\sõ is chosen to eliminate the common drawback that
the turbulent diffusion of k overwhelms that of o [15].

Table I. The constants and functions of various forms of k�õ models
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k

(k

(xj

n
E 02nnt

(2Ui

(xj (xk

(2Ui

(xj (xk

0

Co1 1.44 1.35 1.44

1.921.92Co2 1.8

1.3−1.0 exp(−yl/10)sõ 1.31.3
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The adopted form of fm reproduces correctly the asymptotic limit, i.e. fm8y, and hence
−u68y3 towards the wall. The satisfaction of the asymptotic limit also guarantees the correct
levels of o with the maximum locating at the wall itself. This modification is important to
properly mimic the turbulence levels and transfer rates as a wall is approached. Besides, the
modelled pressure diffusion term Põ also generates the extra source for õ in the buffer zone,
completely replacing the commonly adopted form of the extra term, 2nnt(Ui, jk)2 [13].

Here, the performance of the k�õ models proposed by Launder and Sharma (LS) [13] and
Chien (CH) [14], which were rated best in the review of Patel et al. [16] and Savill [17], are to
be contrasted with the present model’s predictions. The constants and functions adopted by
the models are compiled in Table I.

4. NUMERICAL PROCEDURE

The present numerical procedure [18] solves discretized versions of all equations over a
staggered finite volume arrangement. The principle of mass flux continuity is imposed
indirectly via the solution of the pressure-correction equations according to the SIMPLE
algorithm [19]. The flow property values at volume faces contained in the convective fluxes,
which arise from the finite volume integration process, are approximated by the quadratic
upstream-weighted interpolation scheme (QUICK) [20].

It was found that the use of the third-order approximation of the surface derivatives arising
from the viscous and pressure diffusion processes is essential for reproducing the correct flow
for near-wall asymptotic behaviour, by ensuring that the derivative is evaluated right at the
surface. This can be expressed as
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where DV=DxDy, and the derivative [(f/(y ]N must be located at the north surface. Applying
a Taylor series expansion of the form
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a surface derivative with third-order accuracy can be approximated as
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and
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where j and j+1 are the wall proximity and wall surface nodes respectively, and y is the
location of the dependent variable.

The computed solution is assumed to have converged to its steady state when the magnitude
of the absolute residual sources of mass and momentum, normalized by the respective inlet
fluxes, falls below 0.01%.

5. RESULTS AND DISCUSSIONS

5.1. Channel flow with a uniform transpiration dynamic field

The performance of the proposed model is first contrasted with the DNS data of a channel
flow with uniform wall injection and suction [5]. The schematic picture of the flow is shown
in Figure 1. The Reynolds number Ret, based on the wall friction velocity Ut and the channel
half-width d, was set at 150, where Ut is the averaged wall shear stress on the two walls. The
mass flux ratios on both walls were F=60/Um=0.00344, in which 60 is the wall-normal
velocity and Um is the axial bulk mean velocity.

Grid densities of sizes 60 and 100 in the direction normal to the wall were used to check the
grid independence. Preliminary results indicated that the two meshes produced nearly identical
results, therefore, the 60 grid was used for all subsequent calculations. To ensure the resolution
of the viscous sublayer, the first grid node near the wall was placed at y+:0.1.

The influence of the wall transpiration on the flow can be seen by the asymmetric axial
velocity distribution across the channel, shown in Figure 2. For comparisons, the Ret=150
DNS data [21] in a fully developed channel flow without wall transpiration are also shown in

Figure 1. Geometry of turbulent plane flow with uniform wall transpiration.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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Figure 2. Mean velocity profile.

the figure. It can be clearly seen that the location of the maximum axial velocity is observed
to shift towards the suction side, in which the near-wall velocity is accelerated due to the
suction flux. The log-law plots on both of the walls are shown in Figures 3 and 4, and a
marked different distribution to that without wall transpiration is observed. Referring to
Figure 3, an improved prediction by the adopted model is observed in the injection region, and
the predicted profile agrees well with the DNS distribution.

Regarding the Reynolds stress, all the models can deliver reasonable predictions, as shown
in Figure 5. Further examination of the performances of the models can be directed to the k+

distributions shown in Figure 6, in the near-wall region. In strong contrast to the shear stress
distributions, not all the model can accurately predict the distributions of the turbulent kinetic
energy. While the LS model underpredicted the peak value, the best result is predicted by the
proposed model. By contrasting the results without wall transpiration, the effects of the
presence of injection and suction on the wall are observed to promote and inhibit turbulence
generation respectively.

Figure 3. Mean velocity plotted from the injection wall.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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Figure 4. Mean velocity plotted from the suction wall.

Figure 5. Shear stress distribution.

Figure 6. Turbulent kinetic energy distribution.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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The effect of the inclusion of pressure diffusion terms as indicated earlier, is best exemplified
by observing the o+ distributions in the near-wall region, shown in Figure 7. Despite the
presence of wall transpiration, the DNS indicates that the location of the maximum dissipation
rate is right on the wall, as in the case without wall transpiration. The present model shows the
correct level of o with the maximum located at the wall and, in strong contrast, the CH and
LS models indicate a misplaced local maxima.

The overall performance of the model is evaluated by examining the predicted turbulence
kinetic energy budgets in the near-wall region, shown in Figures 8–10, where Figure 8 shows
the results without wall transpiration. By contrasting with the DNS data, the quality of the
present model predictions can be further ascertained. The k-budget is in general dominated by
production and dissipation processes away from the wall. In the vicinity of the wall, the
dissipation rate balances the viscous diffusion process. The effects of the presence of injection

Figure 7. Turbulent dissipation rate o+ distributions.

Figure 8. Budget of turbulent kinetic energy without transpiration.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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Figure 9. Budget of turbulent kinetic energy in the injection region.

Figure 10. Budget of turbulent kinetic energy in the suction region.

and suction at the wall can be observed to promote and inhibit turbulence generation,
respectively. The maximum generation rate on the injection and suction walls is about three
times and a quarter to the maximum one without wall transpiration.

To explore the model’s performance in the high-Reynolds number flows, the predicted skin
friction coefficients with different levels of wall transpiration are contrasted with the large eddy
simulation (LES) data [22] and measurements [23,24]. Three transpiration rates were used in
this study, and the flow conditions adopted are listed in Table II.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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Table II. The operating conditions for transpired flows

LES data (exit Rem=56 840)

Blowing Suction

Present LES [22] Present LES [22]

0.00375 0.004F=60/Umax −0.00375 −0.004
2.071 2.030 −2.071bf=2F/cf,NT −2.030

LES data (exit Rem=23 853)

Blowing Suction

Present LES [22] Present LES [22]

F=60/Umax 0.002 0.00188 −0.002 −0.00188
0.9 0.85 −0.9bf=2F/cf,NT −0.85

DNS data (Exit Rem=4446)

Blowing Suction

Present DNS [5] Present DNS [5]

0.003F=60/Umax 0.003 −0.003 −0.003
0.899 0.9 −0.92bf=2F/cf,NT −0.9

The present fully developed channel flows are compared with the constant pressure case
measurements [23,24], i.e. the accelerating parameter K= (n/U�2 )(dU�/dx) is zero. This is
motivated by the work of Piomelli et al. [22], which indicated that the physical phenomena
encountered in a fully developed transpired channel are sufficiently similar to those in a
constant pressure boundary layer to allow comparison with the constant pressure boundary
layer results. Therefore, the adopted measurements are with constant free stream velocity. The
Reynolds number (Red) based on the momentum thickness ranges from 667 to 3151, and the
mass flux ratio (F) ranges from 0.008 to −0.002.

The predicted friction coefficient normalized with the friction coefficient without wall
transpiration is shown in Figure 11, where the solid line is based on the equation proposed by
Simpson et al. [25]. The dashed line is the direct extension of the Simpson et al.’s equation to
the suction side. It can be clearly seen that the predicted skin friction coefficient of the present
model agrees well with the LES and experimental data, and this indicates the validity of the
present model in applying to flows with high level of transpiration.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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Figure 11. Ratio of friction coefficient to friction coefficient without transpiration.

5.2. Channel flow with a uniform transpiration thermal field

In this section, the focus here is on the predictive capability of the model to a thermal field
with constant wall temperature within the aforementioned channel flow with wall transpiration
[5]. Traditionally, the thermal diffusivity is assumed to be at=nt/Prt, and the commonly
adopted value of Prt is 0.9 [10]. However, the recent DNS data [26,27] indicate that the wall
value of the turbulent Prandtl number is about 1.1 for normal and large viscous Prandtl
number fluids. Preliminary predictions with two different Prt indicate marginal difference,
though a prediction with Prt=1.1 shows more accurate turbulent heat fluxes.

The predicted normalized temperature and turbulent heat flux are shown in Figures 12 and
13, together with DNS data [5]. It can be observed that the assumption of constant turbulent
Prandtl number could capture the essential characteristics of the thermal field. Referring to
Figures 13 and 14, it can be clearly seen that the present model shows better results than the
other two models do. This might be attributed to the correct dynamic field predicted.

Figure 12. Mean temperature profile for Pr=1.1.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514



LOW-REYNOLDS NUMBER MODELLING OF TRANSPIRED FLOWS 509

Figure 13. Turbulent heat flux for Pr=1.1.

Figure 14. Geometry of duct flow with fluid injection from wall.

5.3. De6eloping channel flow with uniform injection

To further explore the model’s performance in complex environments, the model is applied to
simulate flow in a two-dimensional duct with fluid injection from a permeable part of the wall.
Measurements [7] of the flow quantities as well as wall heat transfer characteristics are
available to evaluate the model’s performance. The geometry of the duct is shown in Figure 14.
Flows with three Reynolds number, Rem (=2hUm0/n)=6700, 9030, and 18500, were investi-
gated, where h is the channel height, Um0 is the average inlet streamwise velocity and n is the
kinematic viscosity. Different levels of injection from the permeable wall were also investigated
and the injection rate is defined as F0=6w/Um0, where 6w is the injection velocity. Based on a
previous investigation of non-permeable flow [9] and the results from the previous section, a
grid of size 100×60, which was non-uniform in both the x- and y-direction, was adopted. The
first near-wall grid node was placed at y+50.5.

Attention here is drawn to the predictions by the present model, and the predictions by the
CH model are also shown for comparisons. The influences of the injection on the flows at

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514
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different Reynolds numbers and injection rates can be seen from the streamwise velocity,
shown in Figures 15–17. Due to the presence of the injection from the bottom wall, the
location of the maximum velocity has been shifted upward. An excessive deceleration of the
streamwise velocity near the permeable wall was predicted by the CH model compared with
the measurements, and the simulation by the present model shows the correct level of flow
development.

Finally, attention is directed to the heat transfer predictions at different levels of the wall
injection rates. It can be clearly seen that the elevated level of wall transpiration causes the
reduction of the Nusselt number (Figure 18). Although both the present and CH models can
reproduce this phenomenon, the reduction of Nu predicted by the CH model is excessive
compared with the measurements.

Figure 15. Axial velocity distribution—Rem=6700, F0=0.0087.

Figure 16. Axial velocity distribution—Rem=9030, F0=0.01.
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Figure 17. Axial velocity distribution—Rem=18500, F0=0.015.

Figure 18. Nusselt number distribution—Rem=6000.

6. CONCLUSION

Dynamic and thermal fields within flows with wall transpiration were predicted by an
improved low-Reynolds number k�õ model. The performance of the proposed model was first
contrasted with the DNS data of a channel flow with uniform wall injection and suction.
Despite the presence of wall transpiration, the DNS data indicated that the location of the
maximum dissipation rate is right on the wall, as in the case without wall transpiration. The
superior performance of the adopted model was reflected by the predicted correct level of o

with the maximum being located at the wall and, in strong contrast, the CH and LS models
indicated misplaced local maxima. By comparing the predicted skin friction coefficient with the
DNS and LES data, the validity of the present model being applied to flows with a high level
of transpiration was ascertained. The predicted thermal field by the present model also
compared favourably with the DNS data. The model was further applied to simulate a
transpired developing channel flow. By contrasting the predicted results with measurements,
the results indicated that the present model reproduced correctly the deceleration of the flow
caused by the wall injection and the near-wall heat transfer behaviour.
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APPENDIX A. NOMENCLATURE

bf dimensionless blowing parameter
Cp specific heat at constant pressure

coefficients in turbulence modelCm, Co1, Co2

Cf skin friction coefficient
E source term in turbulence model

damping function in turbulence modelfm

h channel height
turbulent kinetic energy, uiui/2k

k+ normalized turbulent kinetic energy, k/U t
2

K accelerating parameter
Nusselt numberNu
mean pressureP
molecular and turbulent Prandtl numbersPr, Prt

qw wall heat flux
Rem Reynolds number based on bulk mean velocity, Umh/n

Reynolds number based on momentum thickness, U�d/nRed

Ret Reynolds number based on Ut, Uth/n
turbulent Reynolds number, k2/nõRet

u fluctuation velocity
uiuj Reynolds stress

turbulent heat fluxuju

mean velocity component in xi-directionUi

the axial bulk mean velocityUm, Um0

Umax the maximum of axial mean velocity
U� free stream velocity

friction velocity, 
tw/rUt

wall-normal velocity60, 6w
co-ordinate in streamwise and wall-normal directionsx, y

y+ normalized y co-ordinate, yUt/n
yi, ys distance from the injection or suction wall surfaces

Taylor micro-scale, 
nk/õyl

Cartesian co-ordinate in i-directionxi

Greek letters

thermal and turbulent heat diffusivitiesa, at

channel half width or momentum thicknessd
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dij Kronecker delta
total turbulent dissipation rate, n((ui/(xj)2o

normalized dissipation rate, on/U t
4o+

‘wall’ dissipation, 2n((
k/(xj)2ô

õ isotropic dissipation rate, o−ô

m molecular viscosity
kinematic and eddy viscositiesn, nt

u fluctuating temperature
mean densityr

s Prandtl number
sk, sõ turbulence model constants for diffusion of k, õ

wall shear stresstw

pressure diffusion rate of k, õPk, Po1 %

mean temperatureU
Ut friction temperature, qw/rCpUt

Subscripts

i, j, k tensorial direction indices
at injection or suction wall surfacesi, s

k kinetic energy equation
m bulk mean

without transpiration0, NT
turbulentt
at the wallw

o in dissipation equation
l based on Taylor micro-scale

in eddy viscosity formulationm

t based on Ut

Superscripts

dimensionless quantities+

Mathematical symbol

( ) time-averaged value
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data’, AIAA J., 36, 38–43 (1998).

10. W.P. Jones and B.E. Launder, ‘The calculation of low-Reynolds number phenomena with a two-equation model
of turbulence’, Int. J. Heat Mass Transf., 16, 1119–1130 (1973).

11. B.E. Launder, ‘Low-Reynolds number turbulence near walls’, Report TFD/86/4, Department of Mechanical
Engineering, University of Manchester Institute of Science and Technology, Manchester, UK, February 1984.

12. H. Kawamura, ‘A k�o�62 model with special relevance to the near wall turbulence’, Proc. 8th Symp. on Turbulent
Shear Flow, Munich, Germany, 1991, pp. 26.4.1–26.4.6.

13. B.E. Launder and B.I. Sharma, ‘Application of the energy dissipation model of turbulence to the calculation of
flow near a spinning disc’, Lett. Heat Mass Transf., 1, 131–138 (1974).

14. K.Y. Chien, ‘Predictions of channel and boundary layer flows with a low-Reynolds number turbulence model’,
AIAA J., 20, 33–38 (1982).

15. T. Nagano and M. Tagawa, ‘An improved k–o model for boundary layer flows’, ASME J. Fluids Eng., 112, 33–39
(1990).

16. V.C. Patel, W. Rodi and G. Scheuerer, ‘Turbulence models for near-wall and low-Reynolds number flows: a
review’, AIAA J., 23, 1308–1319 (1985).

17. A.M. Savil, ‘Some recent progress in the turbulence modelling of by-pass transition’, in R.M.C. So, C.G. Speziale
and B.E. Launder (eds.), Near-Wall Turbulent Flows, Elsevier, Amsterdam, 1993, pp. 829–848.

18. C.A. Lin and M.A. Leschziner, ‘Three-dimensional computation of transient interaction between radially injected
jet and swirling cross-flow using second-moment closure’, Comput. Fluid Dyn. J., 1, 423–432 (1993).

19. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, 1980.
20. B.P. Leonard, ‘A stable and accurate convective modelling procedure based on quadratic upstream interpolation’,

Comput. Methods Appl. Mech. Eng., 19, 59–98 (1979).
21. A. Kuroda, N. Kasagi and M. Hirata, ‘Direct numerical simulation of turbulent plane Couette–Poiseuille flows:

effect of mean shear on the near wall turbulence structure’, Proc. 9th Symp. on Turbulent Shear Flow, Kyoto,
Japan, 1993, pp. 8.4.1–8.4.6.

22. U. Piomelli, P. Moin and J. Ferziger, ‘Large eddy simulation of the flow in a transpired channel’, J. Thermophys.,
5, 124–128 (1991).

23. H.L. Julien, W.M. Kays and R.J. Moffat, ‘Experimental hydrodynamics of the accelerated turbulent boundary
layer with and without mass injection’, ASME J. Heat Transf., 93, 373–379 (1971).

24. P.S. Anderson, W.M. Kays and R.J. Moffat, ‘Experimental results for the transpired turbulent boundary layer in
an adverse pressure gradient’, J. Fluid Mech., 69, 353–375 (1975).

25. R.L. Simpson, R.J. Moffat and W.M. Kays, ‘The turbulent boundary layer on a porous plate: experimental skin
friction with variable injection and suction’, Int. J. Heat Mass Transf., 12, 771–789 (1969).

26. R.A. Antonia and J. Kim, ‘Turbulent Prandtl number in the near-wall region of a turbulent channel flow’, Int. J.
Heat Mass Transf., 34, 1905–1908 (1991).

27. J. Kim and P. Moin, ‘Transport of passive scalars in a turbulent channel flow’, in Turbulent Shear Flow, vol. 6,
Springer, Berlin, 1989, pp. 85–96.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 495–514


